Airborne Science Program Observing Platforms for Earth Systems Investigations Global Hawk G

Twin Otter

NASA

Science

The Airborne Science Program: Accessing NASA Aircraft Services

- Program Overview
- Available Platforms
- Engineering and Payload Integration Details:
 Aircraft Mechanical, Electrical, and Telemetry Interfaces
- Administrative details:
 - Flight Request Process
 - Airworthiness and Flight Readiness Reviews

Airborne Science Program Objectives

Satellite Calibration and Validation

Provide platforms to enable essential calibration measurements for the Earth observing satellites, and the validation of data retrieval algorithms.

<u>Support New Sensor Development</u>

Provide sub-orbital flight opportunities to test and refine new instrument technologies and retrieval algorithms, and reduce risk for future orbital missions.

Process Studies

Obtain high-resolution temporal and spatial measurements of complex local processes, which can be coupled to global satellite observations for a better understanding of the complete Earth system.

<u>Develop the Next-Generation of Scientists and Engineers</u>

Foster the development of our future workforce with the handson involvement of graduate students, and young scientists/ engineers in all aspects of ongoing Earth science investigations.

Specific Services

- Facilitates access to airborne assets capable of supporting NASA's scientific measurements
 - ASP core platforms, other NASA, Federal, and commercial platforms
 - Insures compliance with NASA airworthiness directives (NPD 7900.4b,)
 SMD, NASA and OMB reporting requirements, and authority and liability
- Provides capabilities to enhance/enable scientific measurements
 - Mission/Project Management and Logistics
 - Science support systems
 - Airborne data networks
 - Payload engineering support
 - Approvals for laser and radiation, dropsonde release, pressure vessel safety, HAZMAT, EMI, foreign clearances, etc

Currently Available Platforms

https://airbornescience.nasa.gov/aircraft

Role: Remote sensing, Upper Tropospheric and Stratospheric In situ sampling

 Altitude:
 70,000 ft

 Payload:
 2,900 lbs

 Range:
 5,000 + Nmi

Role: Long duration high-altitude remote sensing; upper Tropospheric and Stratospheric in situ sampling

Altitude: 65,000 ft
Payload: 1,500 lbs
Range: 11,000 Nmi

Role: Remote sensing, Upper Tropospheric and Stratospheric In situ sampling, vertical profiling

Altitude: 60,000 ft
Payload: 8,800 lbs
Range: 2,172 Nmi

Role: UAVSAR and mid-altitude remote sensing

Altitude: 45,000 ft
Payload: 2,610 lbs
Range: 3,400 Nmi

Role: Remote sensing, Upper Tropospheric and Stratospheric In situ sampling

Altitude: 42,000 ft
Payload: 3,000 lbs
Range: 1,900 Nmi

Role: Remote sensing, Upper Tropospheric and Stratospheric In situ sampling

Altitude: 42,000 ft
Payload: 3,200 lbs
Range: 1,200 Nmi

Role: Tropospheric In situ sampling, vertical profiles, Synthetic Aperture Radar, remote sensing

Altitude: 41,000 ft
Payload: 30,000 lbs
Range: 5,400 Nmi

Role: Remote sensing, Laser profiling, Tropospheric In situ sampling

Altitude: 32,000 ft.
Payload: 14,700 lbs
Range: 1,883 Nmi

Role: Mid-altitude remote sensing and In situ sampling

Altitude: 33,000 ft.
Payload: 36,50000 lbs
Range: 1,050 Nmi

Role: Mid-altitude remote sensing and In situ sampling

Altitude: 28-35,000 ft. (RVSM)

Payload: 4,100 lbs Range: 3,800 Nmi

Role: Medium lift, medium altitude remote sensing

Altitude: 20,000 ft
Payload: 7,000 lbs
Range: 1,000 Nmi

Role: Low-altitude remote sensing and In situ sampling

Altitude: 25,000 ft Payload: 5,000 lbs Range: 500 Nmi

Role: Long duration mid-altitude remote sensing and in situ sampling; real-time disaster response imaging

Altitude: 41,000 ft
Payload: 3,000 lbs
Range: 3,500 Nmi

Role: Low altitude remote sensing and in situ sampling

Altitude: 12,000 ft Payload: 100 lbs Range: 550 Nmi

Role: Low altitude remote sensing and in situ sampling

Altitude: 15,000 ft
Payload: 100 lbs
Range: 720 Nmi

Role: Low altitude in situ sampling

Altitude: 1,000 ft

Payload: 8 oz (227 gms)
Range: 10 km (line-of-sight)

Mission-specific FAA COAs Required for Most UAS flights

SCIENCE + + PROGRAM

Facility Systems Available for loan on approved Flight Requests

Electro-Optic and Video Tracking Cameras

Precision Attitude Reference Systems (Applanix 510 & 610s)

Some costs may apply

Engineering & Platform Integration

Mechanical mounting structures must meet NASA airworthiness standards, as specified for each aircraft type. Design and fabrication of fixtures is a negotiated responsibility between the aircraft provider and the instrument team.

Structural stress analysis is required in most cases.

Electrical and Communications Connections

Standard aircraft power is 28V DC, with options for 115V 400Hz 3-phase AC

Two-way data communications and real-time state data are typically provided via the onboard NASDAT Ethernet network to the instruments on the larger platforms.

Instrument power and safety interlocks are controlled by hardwire

Time-stamping can be done via the NASDAT NTP server (preferred) or IRIG-B

The NASDAT Airborne Server

(NASA Airborne Science Data and Telemetry system)

- Ingests, records, and re-broadcasts aircraft avionics and state data (AIRINC-429, -1553)
- Server for the onboard Ethernet network & Network Time Protocol (NTP)
- Sat-Com interface for science data packets, instrument status and commands, for users on the ground
- Uses standard IGWADTS* data transmission protocols (IWG-1 packets, etc.)
- Includes a 4-channel Iridium link for global baseline payload communications
- 32 GB of data storage, stabilized internal time references, and back-up GPS

Standard installation on the core ASP platform; optional on some smaller aircraft.

^{*} Inter-Governmental Working Group for Airborne Data & Telemetry Systems

Experiment Interface Panel

(ER-2, WB-57, Global Hawk)

"1GB" (4x 1000BASE-T Ethernet)

"100MB" (8x 10/100BASE-T Ethernet)

Payload Sensor Network Communications

(DC-8, P-3B, C-130 have Ethernet networks installed, but do not use the Experiment Interface Panels.)

Sensor Network Services

Protocols are defined in the Global Hawk Payload Communications Guide.

The NASDAT server broadcasts a standard 1 Hz "IWG-1" ASCII CSV packet with platform state data

Instruments may broadcast a similar packet with engineering health status (required on GH)

Optional "User-Defined" science data packets may be sent, with the data volume a function of available sat-com bandwidth

Users may send commands up the link to their instruments (some restrictions may apply)

The Real-Time Airborne Sensor Network Architecture

Mission Tools Suite (MTS) For asset tracking and real-time science

MTS Supports:

- Tactical decision-making and distributed team situational awareness during a flight
- Real time position and instrument status visualization for single and multi-asset campaigns
- Access to low latency satellite, radar, and other meteorological and mission products
- Communication and collaboration tools including a full CMS and turn-key chat solutions
- Robust support for Education and Public Outreach participation

Project Lead: Aaron R. Duley, Ph.D. Ames Research Center, Moffett Field, CA

For more information visit: http://mts.nasa.gov

Administrative Details:

All aircraft activities start with a NASA Flight Request, indicating funding source and project specifics. This is mandatory for all NASA-related flight activities.

Instrument team contacts their preferred aircraft provider, who will provide cost estimates for system integration and flight costs

Engineering tasks are mutually negotiated with the aircraft provider

Approved - 15B004

General Info

Project Title: Request

Submitted: 15 Oct, 2014

AirSWOT Engineering Test Flights Type: NASA Funded: Normal

ROSES Call:

Yes No 15

\$99,782

\$99.782

Status: Log Number: Fiscal Year: Contract

Approved 15B004 2014

Grant # (if applicable):

Flight Hours Requested (if known):

Rationale for use of NASA Facilities:

Flight Hours 14B009 15B004 Total Hours: For Approval: Approved: 53 53 28.1 Previously 53 Approved: 24.9 24.9

Flown: \$75,642 Cost Estimate \$18,390 Due Date: Flight \$5,750

Hours: MPC: Integration:

Other: Current Total: Previously

\$99,782 Estimate for engineering & Approved: Total ocean/hydrology validation Cost: flight series, 8.4 hours carried

over from 2013. Comments:

Sample Flight Request

https://airbornescience.nasa.gov/sofrs

Piggyback Request: Nο

\$99,782

FR ID: 20141015-064738

Originally was 14B009; Most recent version is 15B004 Rollover

100# Polation Title Statue **Aircraft** B-200 - DFRC AirSWOT Engineering Test Flights Original 15B004 Rolled over B-200 - DFRC AirSWOT Engineering Test Flights Approved 14B009

PI & Funding Principal Investigator

Gregory Sadowy - Jet Propulsion Laboratory

Funding Source

Parag Vaze - NASA - SMD - ESD SWOT Project Manager

NASA HQ Science Concurrence

Eric Lindstrom - NASA - SMD - ESD Oceanography

Science Objectives and Mission Concept-of-Operation Science Objectives:

Demonstrate performance of AirSWOT instrument. Diagnose issues, if required. Record engineering baseline for performance

Mission Concept-of-Operation:

Sortie Type 1: Local flights over Rosamond Lake Sortie Type 2: Transit to Monterrey from DFRC, refuel, fly long like over ocean return to

NASA Procedural Requirements NPR 7900.4B

Effective Date: June 14, 2007
Expiration Date: June 14, 2012
COMPLIANCE IS MANDATORY

Aircraft Operations Management

Responsible Office: Aircraft Management Division

NASA Interim Directive: Unmanned Aircraft System (UAS) Policy Update, NM 7900-83 NASA Interim Directive: NASA Procedural Requirement (NPR) 7900.3B, NASA Aircraft

Operations Management, NM 7900-65

http://nodis3.gsfc.nasa.gov/npg_img/N_PR_7900_004B_/N_PR_7900_003B_.pdf

NASA policy requires formal airworthiness and flight readiness review for <u>any</u> aircraft operations, public or private, that involve NASA-funded instruments, or personnel (including contractors or grantees.)

NASA review boards are convened at Wallops, Langley, Glenn, Armstrong, and Ames.

Airworthiness & Flight Safety Review Board (AFSRB) and Flight Readiness Review (FRR) Outlines

- 1. Project summary and timeline
- 2. Platform
- 3. Base of operations
- 4 . Instrument description and application
 Instrument engineering and installation
 Instrument operation
 Approvals for Laser and Radiation, dropsonde release, pressure vessel safety, HAZMAT safety, EMI, etc.
- 5. Study site map / Flight plan map (Flight lines, Flight altitude(s,) Sun angle requirements time of day
- 7. Test plan
- 8. Safety plan Risk management/Risk matrix, Instrument operator medical clearance?
- 9. Mishap plan

Example Content From an FRR/ARB (partial only)

HAMMR Instrument Design

Flat Reflector Interface

- Three attachment points
 - Each with ¼-28 steel fastener and locking helicoil insert.
 - Manufactured by NCAR EOL DFS from 6061-T6 aluminum.

Aircraft Interface Design Details

(HAMMR Example)

16 attachment points

- Each with ¼-28 MS21059 nut plates.
- Chassis designed by ATK Spacecraft Systems and Services and constructed from 6061-T4 aluminum.

(Courtesy of Colorado State University/JPL)

Structural Substantiation

(Headwall example)

Comibed Shear / Tension

Bearing

Tear out

1.3

>10

>10

1.3

5.3

4.7

1.3

7.1

6.4

Consequences

		Consequences		
Very Low	Low	Moderate	High	Very High
	2			
		4	1	3, 5
	-			

Risk

<u>1</u> – Instrument malfunction generates smoke in aircraft cabin

Mitigation

Very High

High

Moderate

Low

Very Low

Pilots open two windows and extra air flow eliminates smoke hazard. Twin Otters are

unpressurized.

Risk

<u>2</u> – Nadir port mounting hardware brackets present tripping hazard in cabin

Mitigation

Padding and orange tape covering bracket to increase visibility and reduce damage from impact. Pilots and science crew will be seat belted in for flight.

Risk

<u>3</u> – Fuel starvation of aircraft

Mitigation

Systems/procedures in place. HAMMR science crew provides additional eyes and ears.

Risk

4 - Weather is worse than minimum conditions for flight.

Mitigation

No take-off without acceptable conditions for VFR operation during science data collection. Ground hold / delay / 24-hour schedule slip

Risk

<u>5</u> - Low altitude flight over water; limited glide range in event of critical aircraft system failure

Mitigation

All flights will be in daylight, fair weather and low wind conditions, minimizing situational awareness risks. Dual pilots, with a radar altimeter system to monitor altitude. Aircraft can climb at >100 ft/min on single engine at max gross weight and is capable of safely returning to base. Standard military equipment and practices for emergency ditching situations, cabin and crew rafts, and EPIRB (Emergency Position Indicating Radio Beacon).

General Documentation Online at the ASP Website (User handbooks for the core platforms, and a Coms guide for network access)

http://airbornescience.nasa.gov

Includes:

- Flight Request system ("SOFRS")
- Platform specifications and POCs
- The Experiment Interface Panel User Guide
- Other misc. documentation & much more
- Network Communications Guide:

http://www.eol.ucar.edu/raf/Software/iwgadts/DFRC-GH-0029-Baseline.pdf